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MODULE – III

AXISYMMETRIC PROBLEMS IN 

ELASTICITY

224th January 2019 Unsymmetrical Bending

Equations in polar coordinates (2D) –

Equilibrium equations,

Strain-displacement relations,

Airy’s equation,

Stress function and Stress components

Axisymmetric problems –

Governing equations 

Application to thick cylinders

Rotating discs 

AXISYMMETRIC PROBLEMS
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AXISYMMETRIC PROBLEMS
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Axisymmetric Problems: 

Solids of revolution deforms symmetrically with respect to 

the axis of revolution. 

Eg: 

1. Cylinders subjected to internal and external pressures.

2. Rotating Circular Disks.

AXISYMMETRIC PROBLEMS

424th January 2019 Unsymmetrical Bending
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AXISYMMETRIC PROBLEMS
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AXISYMMETRIC PROBLEMS
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AXISYMMETRIC PROBLEMS
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AXISYMMETRIC PROBLEMS
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AXISYMMETRIC PROBLEMS
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AXISYMMETRIC PROBLEMS
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AXISYMMETRIC PROBLEMS
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POLAR COORDINATE SYSTEM

1224th January 2019

In mathematics, the polar coordinate system is

a two-dimensional coordinate system in which

each point on a plane is determined by

a distance from a reference point and an angle from

a reference direction.

Unsymmetrical Bending

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Dimension
https://en.wikipedia.org/wiki/Dimension
https://en.wikipedia.org/wiki/Dimension
https://en.wikipedia.org/wiki/Coordinate_system
https://en.wikipedia.org/wiki/Coordinate_system
https://en.wikipedia.org/wiki/Coordinate_system
https://en.wikipedia.org/wiki/Point_(mathematics)
https://en.wikipedia.org/wiki/Plane_(mathematics)
https://en.wikipedia.org/wiki/Distance
https://en.wikipedia.org/wiki/Angle
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SPHERICAL COORDINATES
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Zenith

Azimuth

r Planeθ Plane

ϕ Plane

CYLINDRICAL COORDINATES

1424th January 2019 Unsymmetrical Bending

+ve r Plane

+ve θ Plane+ve z Plane

Positive Planes in Cylindrical 
Coordinates
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AXISYMMETRIC PROBLEMS
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Stresses components in cylindrical 
coordinates on a Cylinder Segment

EQUS. IN POLAR COORDINATES

1624th January 2019 Unsymmetrical Bending

Stress components in Cylindrical Coordinates are :

σr, σz, σθ, τrz, τzθ,τrθ

Differential Equations of Equilibrium in Cylindrical Co ordinates:
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EQUS. IN POLAR COORDINATES
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Diff Equ of Equil for Axisymmetric Problems:

Since the deformation is symmetrical stress components do not

depend on θ and τzθ & τrθ do not exist

EQUS. IN POLAR COORDINATES

1824th January 2019 Unsymmetrical Bending

In plane stress condition only the following stress components 

exist:

σr ,σθ & τrθ
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EQUS. IN POLAR COORDINATES
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Strain Displacement Equ. in Cylindrical Coordinates

EQUS. IN POLAR COORDINATES
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Strain Displacement Equ. for axisymmetric problems
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EQUS. IN POLAR COORDINATES
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Constitutive Relations/Hooke’s Law in Polar 

Coordinates:

EQUS. IN POLAR COORDINATES

2224th January 2019 Unsymmetrical Bending

Constitutive Relations/Hooke’s Law for plane stress:
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THICK CYLINDERS
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Thick cylinders subjected to internal and external pressure:-

(Lame’s Problem)

THICK CYLINDERS

2424th January 2019 Unsymmetrical Bending

Thick cylinders subjected to internal and external pressure:-

(Lame’s Problem)    Plane Stress:
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THICK CYLINDERS
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Cylinder subjected to internal pressure   P   :-

THICK CYLINDERS

2624th January 2019 Unsymmetrical Bending

Cylinder subjected to external pressure   P   :-
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THICK CYLINDERS
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Thick cylinders subjected to internal and external pressure:-

(Lame’s Problem)

Plane Strain:

AXISYMMETRIC PROBLEMS

2824th January 2019 Unsymmetrical Bending

Stress contour plot of Hoop Stress & Radial Stress for a thick 
cylinder subjected to internal pressure.
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THICK CYLINDERS
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A thick cylinder of internal diameter 160 mm is subjected to an

internal pressure of 40 N/mm2. If the allowable stress in the

material is 120 N/mm2, find the thickness required.

Ans: Thickness = 33.14 mm

THICK CYLINDERS

3024th January 2019 Unsymmetrical Bending

A thick walled tube with an internal radius of 12 cm is subjected to

an internal pressure of 200 Mpa (E = 2.1 x 105 Mpa and ν = 0.3).

Determine the optimum value of external radius if the maximum

shear stress developed is 350 MPa. Also determine the change in

internal radius due to the pressure

Ans: b = 18.33cm; Ua = 0.032 cm.
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THICK CYLINDERS
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r 120 130 140 150 160 170 180 183.3

σr -200.00 -148.22 -107.14 -74.00 -46.87 -24.39 -5.55 0.00

σθ 500.02 448.24 407.16 374.01 346.89 324.41 305.57 300.02

τrθ 350.01 298.23 257.15 224.01 196.88 174.40 155.56 150.01

THICK CYLINDERS

3224th January 2019 Unsymmetrical Bending

A thick walled tube with an internal radius of 12 cm is subjected to

an external pressure of 200 Mpa (E = 2.1 x 105 Mpa and ν = 0.3).

Determine the optimum value of external radius if the maximum

shear stress developed is 350 MPa. Also determine the change in

internal radius due to the pressure

r 120 130 140 150 160 170 180 183.3
σr 0 -51.78 -92.86 -126 -153.1 -175.6 -194.4 -200
σθ -700 -648.2 -607.2 -574 -546.9 -524.4 -505.6 -500.02
τrθ 350.01 298.23 257.15 224 196.9 174.4 155.6 150.01
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THICK CYLINDERS
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The shear stress at any point on a cylinder subjected to internal

and external pressure is given by:

The stress distribution on a cylinder subjected to internal

pressure shows that the shear stress will be maximum at the

inner surface.

At the inner surface, r = a;

. 

THICK CYLINDERS

3424th January 2019 Unsymmetrical Bending

b = 18.33 cm.       Ans
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THICK CYLINDERS
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Ur = 0.032 cm         Ans

THICK CYLINDERS

3624th January 2019 Unsymmetrical Bending

If the factor of safety is given use the following equation to get the

permissible stress:

Any of the failure theories can be used for the design:

Use,

, 



1/29/2019

19

THEORIES OF FAILURE

37Unsymmetrical Bending24th January 2019

THEORIES OF FAILURE:

 σy is the yield stress for the material in a uniaxial test.

 σ1, σ2 and σ3 are the principal stresses such that σ1 > σ2 > σ3

1. Maximum principal stress theory:

According to maximum principal stress theory, failure 

occurs when  σ1 > σy.

Failure depends on mode of failure i.e., ductile or brittle and the 

factor such as stress, strain and energy.

THEORIES OF FAILURE

38Unsymmetrical Bending24th January 2019

THEORIES OF FAILURE:

 σy is the yield stress for the material in a uniaxial test.

 σ1, σ2 and σ3 are the principal stresses such that σ1 > σ2 > σ3

2. Maximum Shearing Stress Theory:

According to maximum shearing stress theory, 

failure occurs when 
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THEORIES OF FAILURE

39Unsymmetrical Bending24th January 2019

THEORIES OF FAILURE:

 σy is the yield stress for the material in a uniaxial test.

 σ1, σ2 and σ3 are the principal stresses such that σ1 > σ2 > σ3

3. Maximum Elastic Strain Theory:

According to maximum Elastic Strain theory, 

failure occurs when 

THEORIES OF FAILURE
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THEORIES OF FAILURE:

 σy is the yield stress for the material in a uniaxial test.

 σ1, σ2 and σ3 are the principal stresses such that σ1 > σ2 > σ3

4. Octahedral Shearing Stress Theory:

According to maximum Octahedral Shearing 

Stress theory, failure occurs when 
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THEORIES OF FAILURE
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THEORIES OF FAILURE:

 σy is the yield stress for the material in a uniaxial test.

 σ1, σ2 and σ3 are the principal stresses such that σ1 > σ2 > σ3

5. Maximum elastic energy Theory:

According to maximum elastic energy theory, 

failure occurs when 

THEORIES OF FAILURE
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THEORIES OF FAILURE:

 σy is the yield stress for the material in a uniaxial test.

 σ1, σ2 and σ3 are the principal stresses such that σ1 > σ2 > σ3

6. Energy of distortion theory:

According to maximum Energy of distortion 

theory, failure occurs when 

* This identical to the octahedral shearing stress theory.



1/29/2019

22

COMPOSITE TUBES
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STRESSES IN COMPOSITE TUBES –

INTERFERENCE FIT

COMPOSITE TUBES

4424th January 2019 Unsymmetrical Bending

In a shrink fitted composite tube two cylinders of different material

or same material is fitted one inside another.

a – Inner radius of the inner cylinder.

c – Outer radius of the inner cylinder.

c-Δ – Inner radius of the outer cylinder.

b – Outer radius of the outer cylinder.
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COMPOSITE TUBES
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The two cylinders are assembled by heating the outer cylinder and

cooling the inner cylinder.

The composite tubes can with stand very high pressure of the order

of 15000 bar.

If we need a normal tube to withstand such a high pressure the

yield stress of the material must be at least 2940 MPa. Since no

such high-strength material exist, shrink fitted composite tubes are

designed.

COMPOSITE TUBES

4624th January 2019 Unsymmetrical Bending

Pc is the contact pressure due to shrink fit.

The contact pressure acts on the outer surface of the inner

cylinder and inner surface of the outer cylinder.

u1 – Reduction in outer radius of the inner cylinder due to contact

pressure Pc.

u2 – Increase in inner radius of the outer cylinder due to contact

pressure Pc.

-U1 + U2 = Δ
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COMPOSITE TUBES
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Substituting the expression for U1 and U2 in the above

expression we get,

The above expression give the contact pressure, Pc due to shrink

fit.

If the two cylinders are made of the same material.

Then, E1 = E2; ν1 = ν2

COMPOSITE TUBES

4824th January 2019 Unsymmetrical Bending

If the two cylinders are made of the same material.

Then, E1 = E2; ν1 = ν2

Stress distribution in a shrink fit

cylinder due to contact pressure.
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COMPOSITE TUBES
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Fig a shows the stress distribution on the shrink

fit due to the contact pressure.

Fig b shows the stress distribution due to

internal pressure.

Sum of the stresses at any point on the shrink

fit tube will give the net stress due to shrink fit

and internal pressure.

At the inner surface of the inner tube p causes

a tensile circumferential stress but the pc

causes a compressive circumferential stress.

COMPOSITE TUBES

5024th January 2019 Unsymmetrical Bending

So the net stress at the inner surface of the inner wall will be less 

than the stress due to internal pressure alone.

Hence a composite cylinder can support greater internal pressure 

than an ordinary cylinder.

At the inner point of the  external cylinder both the stress due to p 

and that due to pc are tensile and they get added up.
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COMPOSITE TUBES
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For design purposes the shrink fit 

allowance can be chosen such that the 

two cylinders will have equal strength.

According to maximum shear stress 

theory:

Shrink Fit allowance 

required for  getting 

equal strength is given by

COMPOSITE TUBES

5224th January 2019 Unsymmetrical Bending

The above quantity will be minimum when

is minimum

For a given values of P, a and b, the optimum values of c and Δ for 

which the value of σθ – σr is a minimum is given by:
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COMPOSITE TUBES
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A tube 96 mm in diameter is used to reinforce a tube 48 mm internal 

diameter and 72 mm outer diameter. The compound  tube is made to 

with stand an internal pressure of 60 MPa. The shrinkage allowance 

is such that the final maximum stress in each tube is the same. 

Determine this stress and plot a diagram to show the variation of 

hoop stress in the two tubes. Also calculate the shrinkage allowance 

required.

COMPOSITE TUBES

5424th January 2019 Unsymmetrical Bending

Hoop stress = Circumferential stress = tangential stress.

Find the Hoop stress  in terms of contact pressure at

Inner Cylinder: At r = 24 mm and r = 36 mm  ( -3.6Pc and -2.6 Pc)

Outer cylinder: At r = 36 mm and r = 48 mm (3.572 Pc and 2.572 Pc)

Consider the composite tube as a single unit and find the Hoop stress 

at r = 24mm, 30mm and 48 mm (100 Mpa, 55.6 Mpa and 40 Mpa)

Find the net stress at the inner and outer radii of both tubes.
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COMPOSITE TUBES
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Equate Maximum stress in the inner tube to maximum stress in 

the outer tube and find the contact pressure (6.19 MPa).

Δ = 0.0066 mm.

ROTATING DISCS

5624th January 2019 Unsymmetrical Bending

STRESSES IN ROTATING DISCS
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ROTATING DISCS
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STRESSES IN SOLID ROTATING DISC:

The stress distribution in rotating circular disks which are thin is 

given by:

The stresses attain their maximum value at the centre of the disc. 

(i.e., at r=0).

b – Outer radius of the disk

ρ – Density of disk material.

ROTATING DISCS

5824th January 2019 Unsymmetrical Bending

STRESSES IN ROTATING DISC WITH A HOLE OF RADIUS a:

The stress distribution in rotating circular disk with a hole is given 

by:
b – Outer radius of the disk

ρ – Density of disk material.

a- radius of the hole

ω – Angular velocity in rad/s.
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ROTATING DISCS
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A thin disc of uniform thickness is of 800 mm outer diameter and 50

mm inner diameter. It rotates at 3000 rpm. Determine the radial and

the hoop stresses at radii of 0.25 mm, 50 mm, 100 mm, 150 mm, 200

mm, 300 mm and 400 mm. Density of the material is 7800 kg/m3 , ν

= 0.25, What are the maximum values of the radial, hoop and shear

stresses.

(use SI units)

ROTATING DISCS

6024th January 2019 Unsymmetrical Bending

r(m) 0.025 0.05 0.1 0.15 0.2 0.3 0.4

σr (Mpa) 0 36.94 43.97 41.8 36.94 21.73 0

r(m) 0.025 0.05 0.1 0.15 0.2 0.3 0.4

σθ (Mpa) 100.17 62.32 51.68 47.83 44.28 35.423 23.48
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ROTATING DISCS
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Note: At r = a, σr = 0

ROTATING DISCS
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A hollow steel disc of 400 mm outer diameter and 100 mm inside

diameter is shrunk fit on a steel shaft. The pressure between the

disc and the shaft is 60 MPa. Determine the speed of the disc at

which it loosen from the shaft neglecting the change in dimensions

of the shaft due to rotation. ρ = 7700 kg/m3 and ν = 0.3.
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ROTATING DISCS
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ROTATING DISCS
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Δ = Udisc (CP) - Ushaft (CP) = 3.05 x 10-5

Δ = Udisc (rot) - Ushaft (rot)

Radial displacement of disc due to rotation:

a = 0.05; b = 0.2; r = 0.05; ρ = 7700; Udisc(rot) = 6.1302 x 10-11 ω2  m

Radial displacement of shaft due to rotation:

a = 0; b = 0.05; r = 0.05; ρ = 7700;

Ushaft(rot) = 8.021 x 10-13 ω2 m ω= 710 rad/sec;  N = 6781.
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ROTATING DISCS
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Ur = 1.00 x 10-5 m.

When the disc is rotating , find the value of σθ and σ r in terms of 

ω using equ.

and thereby find the radial displacement using equ.

The disc will get loosened when this radial displacement is 

equal to 1.952 x 10-5 m

ROTATING DISCS

6624th January 2019 Unsymmetrical Bending

ω = 710.1 rad/s

rpm = 6781 
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ROTATING DISCS
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A flat steel disc of 75 cm outside diameter with a 15 cm dameter hole

is shrunk around a solid shaft. The shrink fit allowance is 1 part in

1000 (0.0075 cm in radius). E = 2.14 x 105 MPa.

At what rpm will the shrink fit loosen up as a result of rotation?

What is the circumferential stress in the disc when spinning at the

above speed?

Assume that the same equations as for the disk are applicable to the

solid rotating shaft also.

(use SI units)

ROTATING DISCS

6824th January 2019 Unsymmetrical Bending

ω = 475 rad/s

rpm = 4536 
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STRESS FUNCTION IN POLAR COORDINATES
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Airy s Stress Function (φ) in polar coordinates can be defined 
as :

STRESS FUNCTION IN POLAR COORDINATES

7024th January 2019 Unsymmetrical Bending

Stress Compatibility Equations:

Plane Stress:

Plane Strain:

In the absence of body forces:

The above equation is also called Biharmonic equation
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STRESS FUNCTION IN POLAR COORDINATES
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Show that the function

satisfies the stress compatibility equation in polar

coordinates in the absence of body forces. Find the

components of stress.

In the absence of body forces

STRESS FUNCTION IN POLAR COORDINATES

7224th January 2019 Unsymmetrical Bending
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STRESS FUNCTION IN POLAR COORDINATES
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STRESS FUNCTION IN POLAR COORDINATES

7424th January 2019 Unsymmetrical Bending
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STRESS FUNCTION IN POLAR COORDINATES
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STRESS FUNCTION IN POLAR COORDINATES

7624th January 2019 Unsymmetrical Bending
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STRESS FUNCTION IN POLAR COORDINATES
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STRESS CONCENTRATION

78Unsymmetrical Bending24th January 2019

Large stresses resulting from discontinuities developed in a small 

portion of a member are called stress concentrations
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STRESS CONCENTRATION

STRESS CONCENTRATION

80Unsymmetrical Bending24th January 2019

Conditions for Stress concentration:

1. Abrupt changes in section eg: root of the thread of a bolt, at the 

bottom of a tooth on a gear, at a section of a plate or beam 

containing a hole, corner of a keyway in a shaft.

2. Contact Stresses at the point of application of the external forces –

eg: at points of contact between gear teeth.

3. Discontinuities in material: eg: non metallic inclusions in steel.

4. Initial Stresses in a member – eg: residual stresses in welding.

5. Crack that exists in the member
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STRESS FUNCTION IN POLAR COORDINATES
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Stress concentration problem of a small hole in a large plate :

STRESS FUNCTION IN POLAR COORDINATES

8224th January 2019 Unsymmetrical Bending
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STRESS FUNCTION IN POLAR COORDINATES
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Application of stress function to Lame’s problem:

STRESS FUNCTION IN POLAR COORDINATES
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The boundary conditions can be applied as follows:

 Stress components varying along the radial direction

 Plane Stress as well as plane Strain Condition.

 Coefficient B must be zero from the consideration of 

displacement of thick cylinders.
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STRESS FUNCTION IN POLAR COORDINATES
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With B = 0, the stress function and components can be written as:

STRESS FUNCTION IN POLAR COORDINATES

8624th January 2019 Unsymmetrical Bending
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STRESS FUNCTION IN POLAR COORDINATES
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Shear Centre:

 The transverse force applied at shear center does not lead to

the torsion of thin-walled beam.

 The shear center is a center of rotation for a section of thin-

walled beam subjected to pure torsion.

 The shear center is a position of shear flows resultant force, if

the thin-walled beam is subjected to pure shear.


